System Overview
The Deep Learning Model Hub is a full-stack web application designed to facilitate the sharing, discovery, testing, and deployment of deep learning models. It serves as a centralized platform where data scientists and ML engineers can upload models, browse existing models, and deploy them for inference.
Core Capabilities
- Model Management: Upload, version, and organize ML models
- Model Discovery: Browse, search, and filter models by various criteria
- Model Deployment: Deploy models as REST API endpoints
- User Management: Authentication, authorization, and user profiles
- Model Testing: Interactive web interface for model inference
- Performance Monitoring: Track model usage and performance metrics
High-Level Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Frontend │ │ Backend │ │ Database │
│ (Next.js) │◄──►│ (FastAPI) │◄──►│ (PostgreSQL/ │
│ │ │ │ │ SQLite) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ CDN/Vercel │ │ Container │ │ File Storage │
│ Hosting │ │ Platform │ │ (S3/Local) │
│ │ │ (Railway) │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Architecture Patterns
1. Layered Architecture
The backend follows a layered architecture pattern:
- Presentation Layer: FastAPI endpoints and request/response handling
- Business Logic Layer: Services for model management, deployment, and user operations
- Data Access Layer: SQLAlchemy ORM models and database operations
- Infrastructure Layer: External services (S3, deployment platforms)
2. Model-View-Controller (MVC)
-
Models: SQLAlchemy database models
(
User,Model,ModelVersion,ModelDeployment) - Views: Next.js React components and pages
- Controllers: FastAPI route handlers and business logic services
3. Repository Pattern
Database operations are abstracted through SQLAlchemy ORM, providing a clean separation between business logic and data persistence.
4. Microservices-Ready Design
While currently monolithic, the system is designed with clear service boundaries that can be extracted into microservices:
- Authentication Service
- Model Management Service
- Deployment Service
- User Management Service
Technology Stack
Frontend Stack
| Component | Technology | Version | Purpose |
|---|---|---|---|
| Framework | Next.js | 14.2.29 | React-based web framework with SSR |
| Language | TypeScript | 5.3.3 | Type-safe JavaScript |
| Styling | Tailwind CSS | 3.4.1 | Utility-first CSS framework |
| HTTP Client | Axios | 1.9.0 | API communication |
| UI Components | Radix UI | Various | Accessible component primitives |
Backend Stack
| Component | Technology | Version | Purpose |
|---|---|---|---|
| Framework | FastAPI | 0.104.1 | High-performance async Python web framework |
| Server | Uvicorn | 0.24.0 | ASGI server |
| ORM | SQLAlchemy | 2.0.23 | Database ORM |
| Validation | Pydantic | 2.5.2 | Data validation and serialization |
| Authentication | python-jose | 3.3.0 | JWT token handling |
System Components
1. Frontend Components
Core Components
src/
├── app/ # Next.js 13+ App Router
│ ├── layout.tsx # Root layout with navigation
│ ├── page.tsx # Landing page
│ ├── auth/ # Authentication pages
│ ├── dashboard/ # User dashboard
│ ├── models/ # Model browsing and details
│ └── deployments/ # Deployment management
├── components/
│ ├── Navigation.tsx # Main navigation bar
│ ├── ThemeToggle.tsx # Dark/light mode toggle
│ └── ui/ # Reusable UI components
└── lib/
├── api.ts # API client and type definitions
└── utils.ts # Utility functions
2. Backend Components
Application Structure
app/
├── main.py # FastAPI application entry point
├── core/
│ ├── config.py # Application configuration
│ ├── database.py # Database connection management
│ └── security.py # Authentication utilities
├── api/
│ └── v1/
│ ├── auth.py # Authentication endpoints
│ ├── users.py # User management endpoints
│ ├── models.py # Model management endpoints
│ └── deployments.py # Deployment endpoints
├── models/ # SQLAlchemy database models
├── schemas/ # Pydantic schemas for API
└── services/ # Business logic services
Data Models & Database Design
Entity Relationship Diagram
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ User │ │ Model │ │ ModelVersion│
├─────────────┤ ├─────────────┤ ├─────────────┤
│ id (PK) │────────┬│ id (PK) │────────┬│ id (PK) │
│ email │ ││ name │ ││ version │
│ username │ ││ description │ ││ changelog │
│ full_name │ ││ framework │ ││ s3_path │
│ password │ ││ owner_id(FK)│ ││ model_id(FK)│
│ is_active │ │└─────────────┘ │└─────────────┘
│ created_at │ │ │
└─────────────┘ │ │
│ ┌─────────────────────┐│
└─│ ModelDeployment ││
├─────────────────────┤│
│ id (PK) ││
│ name ││
│ model_id (FK) │┘
│ model_version_id(FK)│
│ deployment_type │
│ status │
│ endpoint_url │
└─────────────────────┘
Database Models
User Model
class User(SQLAlchemyBaseUserTable):
id: int (Primary Key)
email: str (Unique, Index)
username: str (Unique, Index)
full_name: str
hashed_password: str
is_active: bool = True
is_superuser: bool = False
created_at: datetime
updated_at: datetime
Model Entity
class Model(Base):
id: int (Primary Key)
name: str (Index)
description: str
framework: str
model_type: str
tags: JSON
is_public: bool = True
download_count: int = 0
owner_id: int (Foreign Key -> User.id)
created_at: datetime
updated_at: datetime
Model Deployment
class ModelDeployment(Base):
id: int (Primary Key)
name: str
model_id: int (Foreign Key -> Model.id)
model_version_id: int (Foreign Key -> ModelVersion.id)
deployment_type: str
status: str
endpoint_url: str
created_at: datetime
updated_at: datetime
API Design
RESTful API Structure
The API follows REST principles with consistent resource naming and HTTP methods:
/api/v1/
├── auth/
│ ├── POST /token # Login (OAuth2 compatible)
│ ├── POST /register # User registration
│ └── POST /refresh # Token refresh
├── users/
│ ├── GET /me # Current user profile
│ ├── PUT /me # Update profile
│ └── GET /{id} # User details (public)
├── models/
│ ├── GET / # List models (with filters)
│ ├── POST / # Upload new model
│ ├── GET /{id} # Model details
│ ├── PUT /{id} # Update model
│ ├── DELETE /{id} # Delete model
│ └── POST /{id}/download # Download model
└── deployments/
├── GET / # List deployments
├── POST / # Create deployment
├── GET /{id} # Deployment details
├── PUT /{id} # Update deployment
├── DELETE /{id} # Delete deployment
└── GET /{id}/logs # Deployment logs
Authentication
The API uses OAuth2 with JWT tokens for authentication:
# Login Request
POST /api/v1/auth/token
Content-Type: application/x-www-form-urlencoded
username=user@example.com&password=secret
# Response
{
"access_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
"token_type": "bearer",
"expires_in": 3600
}
Error Handling
Consistent error responses across all endpoints:
{
"detail": "Error message",
"status_code": 400,
"timestamp": "2024-01-01T12:00:00Z",
"path": "/api/v1/models/123"
}
Frontend Architecture
Next.js App Router Structure
The frontend uses Next.js 13+ App Router for enhanced performance and developer experience:
Page Organization
src/app/
├── layout.tsx # Root layout (navigation, providers)
├── page.tsx # Landing page
├── loading.tsx # Global loading UI
├── error.tsx # Global error boundary
├── not-found.tsx # 404 page
├── auth/
│ ├── login/page.tsx # Login page
│ └── register/page.tsx # Registration page
├── dashboard/
│ ├── page.tsx # User dashboard
│ ├── layout.tsx # Dashboard layout
│ └── loading.tsx # Dashboard loading
├── models/
│ ├── page.tsx # Model listing
│ ├── [id]/page.tsx # Model details
│ └── upload/page.tsx # Model upload
└── deployments/
├── page.tsx # Deployment listing
└── [id]/page.tsx # Deployment details
State Management
- React Context: Authentication state and user data
- React Query: Server state management and caching
- Local State: Component-specific state with useState/useReducer
UI Component Architecture
src/components/
├── ui/ # Base UI components (shadcn/ui)
│ ├── Button.tsx
│ ├── Input.tsx
│ ├── Dialog.tsx
│ └── Table.tsx
├── forms/ # Form components
│ ├── LoginForm.tsx
│ ├── ModelUploadForm.tsx
│ └── DeploymentForm.tsx
├── layout/ # Layout components
│ ├── Navigation.tsx
│ ├── Sidebar.tsx
│ └── Footer.tsx
└── features/ # Feature-specific components
├── ModelCard.tsx
├── DeploymentStatus.tsx
└── UserProfile.tsx
Security Architecture
Authentication & Authorization
- JWT Tokens: Stateless authentication with configurable expiration
- Refresh Tokens: Secure token renewal mechanism
- Role-based Access: User and superuser roles
- Resource Ownership: Users can only modify their own resources
Data Validation
- Pydantic Schemas: Comprehensive input validation
- File Upload Validation: Type and size restrictions
- SQL Injection Protection: SQLAlchemy ORM parameterized queries
Security Headers
# FastAPI Security Middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["https://yourdomain.com"],
allow_credentials=True,
allow_methods=["GET", "POST", "PUT", "DELETE"],
allow_headers=["*"],
)
# Security Headers
- X-Content-Type-Options: nosniff
- X-Frame-Options: DENY
- X-XSS-Protection: 1; mode=block
- Strict-Transport-Security: max-age=31536000
Environment Security
- Environment Variables: Sensitive data stored securely
- Secret Management: Platform-native secret storage
- API Key Rotation: Regular rotation of service API keys
Deployment Architecture
Multi-Environment Strategy
Development → Staging → Production
↓ ↓ ↓
Local Dev → Testing → Live Users
Container Strategy
- Development: Docker Compose for local multi-service setup
- Production: Railway/Render container platforms
- Scaling: Horizontal pod autoscaling based on CPU/memory
Cloud Platform Architecture
| Component | Platform | Purpose | Scaling |
|---|---|---|---|
| Frontend | Vercel | Static site hosting with SSR | Edge functions, CDN |
| Backend API | Railway | Container hosting | Horizontal scaling |
| Database | Railway PostgreSQL | Managed database | Vertical scaling |
| File Storage | S3 Compatible | Model file storage | Unlimited |
Environment Configuration
# Production Environment Variables
DATABASE_URL=postgresql://...
SECRET_KEY=super-secret-key
CORS_ORIGINS=https://yourdomain.com
S3_BUCKET_NAME=model-storage
S3_ACCESS_KEY=...
S3_SECRET_KEY=...
S3_REGION=us-east-1
Data Flow
User Authentication Flow
1. User submits credentials
2. Backend validates against database
3. JWT token generated and returned
4. Token stored in frontend
5. Token included in subsequent requests
6. Backend validates token for protected routes
Model Upload Flow
1. User selects model file
2. Frontend validates file type/size
3. File uploaded to backend
4. Backend stores file and metadata
5. Database record created
6. Success response returned
Model Deployment Flow
1. User initiates deployment
2. Backend creates deployment record
3. Model files prepared for deployment
4. Deployment platform API called
5. Endpoint URL received and stored
6. Deployment status updated
Real-time Updates
- Polling: Frontend polls for deployment status updates
- WebSockets: Real-time deployment logs (future enhancement)
- Webhooks: Platform notifications for deployment events
Scalability & Performance
Backend Scaling Strategy
- Stateless Design: No server-side sessions
- Load Balancing: Multiple backend instances
- Database Connection Pooling: Efficient connection reuse
- Async Processing: Non-blocking I/O operations
Database Performance
- Optimized Indexes: Strategic indexing for common queries
- Query Optimization: Efficient SQLAlchemy queries
- Connection Pooling: PostgreSQL connection management
- Read Replicas: Scale read operations (future)
Frontend Performance
- Code Splitting: Route-based and component-level splitting
- Static Site Generation: Next.js optimization
- CDN Delivery: Vercel edge network
- Image Optimization: Automatic WebP conversion
Caching Strategy
| Layer | Cache Type | TTL | Purpose |
|---|---|---|---|
| CDN | Edge Cache | 1 hour | Static assets |
| Frontend | React Query | 5 minutes | API responses |
| Backend | Redis (future) | 10 minutes | Database queries |
| Database | Query Cache | Automatic | Repeated queries |
Infrastructure as Code
Docker Configuration
Backend Dockerfile
# Multi-stage build for optimization
FROM python:3.11-slim as requirements-stage
WORKDIR /tmp
RUN pip install poetry
COPY ./pyproject.toml ./poetry.lock* /tmp/
RUN poetry export -f requirements.txt --output requirements.txt --without-hashes
FROM python:3.11-slim
WORKDIR /app
COPY --from=requirements-stage /tmp/requirements.txt /app/requirements.txt
RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt
COPY ./app /app/app
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]
Docker Compose (Development)
version: '3.8'
services:
backend:
build: ./backend
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql://user:pass@db:5432/modeldb
depends_on:
- db
volumes:
- ./backend:/app
frontend:
build: ./frontend
ports:
- "3000:3000"
environment:
- NEXT_PUBLIC_API_URL=http://localhost:8000
volumes:
- ./frontend:/app
db:
image: postgres:15
environment:
POSTGRES_DB: modeldb
POSTGRES_USER: user
POSTGRES_PASSWORD: pass
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
volumes:
postgres_data:
Deployment Scripts
- Automated Deployment: Railway and Vercel integration
- Environment Management: Configuration via environment variables
- Database Migrations: Alembic migration workflow
- Health Checks: Container health monitoring
Monitoring & Observability
Logging Strategy
- Structured Logging: JSON format for easy parsing
- Log Levels: ERROR, WARN, INFO, DEBUG
- Centralized Logging: Platform-native log aggregation
- Request Tracing: Correlation IDs for request tracking
Health Checks
# Health Check Endpoint
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"timestamp": datetime.utcnow(),
"version": "1.0.0",
"database": await check_database_connection(),
"storage": await check_storage_connection()
}
Performance Metrics
- Response Time: API endpoint performance
- Error Rates: HTTP error status tracking
- Resource Usage: CPU, memory, disk utilization
- Business Metrics: Model uploads, downloads, deployments
Alerting
| Metric | Threshold | Action | Priority |
|---|---|---|---|
| Error Rate | > 5% | Email Alert | High |
| Response Time | > 2s | Slack Alert | Medium |
| CPU Usage | > 80% | Scale Up | Medium |
| Database Connections | > 90% | Email Alert | High |
CI/CD Pipeline
GitHub Actions Workflow
name: CI/CD Pipeline
on:
push:
branches: [main, develop]
pull_request:
branches: [main]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.11'
- name: Install dependencies
run: pip install -r requirements.txt
- name: Run tests
run: pytest --cov=app --cov-report=xml
- name: Upload coverage
uses: codecov/codecov-action@v3
deploy:
needs: test
runs-on: ubuntu-latest
if: github.ref == 'refs/heads/main'
steps:
- name: Deploy to Railway
run: railway deploy
Quality Gates
- All Tests Pass: Unit, integration, and E2E tests
- Code Coverage: Backend (80%+), Frontend (70%+)
- Security Scan: Dependency vulnerability assessment
- Performance Tests: Load testing for production releases
Deployment Strategy
- Branch Protection: Main branch requires PR approval
- Staging Environment: Automatic deployment from develop branch
- Production Deployment: Manual approval for main branch
- Rollback Strategy: Quick rollback capability
Testing Strategy
| Test Type | Framework | Coverage | Frequency |
|---|---|---|---|
| Unit Tests | pytest | 80%+ | Every commit |
| Integration Tests | pytest + TestClient | 60%+ | Every PR |
| E2E Tests | Playwright | Critical paths | Before release |
| Load Tests | Locust | API endpoints | Weekly |